Package: HPLB 1.0.0
HPLB: High-Probability Lower Bounds for the Total Variance Distance
An implementation of high-probability lower bounds for the total variance distance as introduced in Michel & Naef & Meinshausen (2020) <arxiv:2005.06006>. An estimated lower-bound (with high-probability) on the total variation distance between two probability distributions from which samples are observed can be obtained with the function HPLB.
Authors:
HPLB_1.0.0.tar.gz
HPLB_1.0.0.zip(r-4.5)HPLB_1.0.0.zip(r-4.4)HPLB_1.0.0.zip(r-4.3)
HPLB_1.0.0.tgz(r-4.4-any)HPLB_1.0.0.tgz(r-4.3-any)
HPLB_1.0.0.tar.gz(r-4.5-noble)HPLB_1.0.0.tar.gz(r-4.4-noble)
HPLB_1.0.0.tgz(r-4.4-emscripten)HPLB_1.0.0.tgz(r-4.3-emscripten)
HPLB.pdf |HPLB.html✨
HPLB/json (API)
# Install 'HPLB' in R: |
install.packages('HPLB', repos = c('https://lorismichel.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/lorismichel/hplb/issues
classificationmachine-learningtwo-sample-test
Last updated 4 years agofrom:03415dab65. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win | NOTE | Nov 04 2024 |
R-4.5-linux | NOTE | Nov 04 2024 |
R-4.4-win | NOTE | Nov 04 2024 |
R-4.4-mac | NOTE | Nov 04 2024 |
R-4.3-win | OK | Nov 04 2024 |
R-4.3-mac | OK | Nov 04 2024 |
Exports:empiricalBFHPLBHPLBmatrix
Dependencies:data.table